近期,北京铭镓半导体有限公司(以下简称:铭镓半导体)使用导模法成功制备了高质量4英寸(001)主面氧化镓(β-Ga2O3)单晶,完成了4英寸氧化镓晶圆衬底技术突破,并且进行了多次重复性实验,成为国内首个掌握第四代半导体氧化镓材料4英寸(001)相单晶衬底生长技术的产业化公司。
铭镓半导体获突破
据晶片测试分析,其结晶质量和加工技术也保持在产品级标准。劳厄测试衍射斑点清晰、对称,说明晶体单晶性良好,无孪晶,XRD显示晶面(001)面半峰全宽低至72arcsec,加工后晶片表面粗糙度AFM(Rq)低至0.5nm。
单晶晶片RMS:0.490nm(Source:铭镓半导体)
晶片的摇摆曲线半高宽:72arcsec(Source:铭镓半导体)
稳态氧化镓晶体为单斜结构,存在(100)和(001)两个解理面,就生长工艺而言,主面为(100)晶相氧化镓晶体更易于生长,主面为(001)晶体的生长工艺却要求极高的工艺过程控制,就加工工艺而言,相同加工条件下(001)面表面质量和成品率更优,(100)面极易解理破碎,难以实现高效高表面质量加工。
从应用端来看,主面(001)晶相氧化镓更适于功率半导体器件的使用,因此控制生长主面(001)晶相氧化镓晶体难度大,但却极具产业化价值,抑或说不具备大尺寸主面(001)晶相氧化镓晶体的生长工艺,氧化镓市场应用端推动过程将极为困难。
同时,公司光学晶体已完成中试,开始转型规模化量产,其生产的掺杂人工光学晶体已获得国内国外客户的广泛认可,另外磷化铟多晶材料产线也已上线运营,完成重点客户认证工作,并获得客户的长期稳定性订单。
铭镓半导体成立于2020年,专注于新型超宽禁带半导体材料氧化镓单晶、外延衬底和高频大功率器件的制造,是国内较早将半导体氧化镓材料产业化落地的企业之一,为国内外从事氧化镓后端器件开发的研究机构和企业提供上游材料保障。
氧化镓是“何方神圣”?
氧化镓,是继Si、SiC及GaN后的第四代宽禁带半导体材料,以β-Ga2O3单晶为基础材料的功率器件具有更高的击穿电压与更低的导通电阻,从而拥有更低的导通损耗和更高的功率转换效率,在功率电子器件方面具有极大的应用潜力。
氧化镓未来主要应用于通信、雷达、航空航天、高铁动车、新能源汽车等领域的辐射探测领域的传感器芯片,以及在大功率和超大功率芯片。
虽然目前还处于研发阶段,但各国半导体企业都在争相布局氧化镓。
国内外企业争相布局
国际方面,日本较为领先。早在2008年,京都大学的藤田教授就发布了氧化镓深紫外线检测和Schottky Barrier Junction、蓝宝石(Sapphire)晶圆上的外延生长(Epitaxial Growth)等研发成果。
2012年,日本率先实现2英寸氧化镓材料的突破,NCT氧化镓材料尺寸可达到6英寸;2015年,推出了高质量氧化镓单晶衬底,2016年又推出了同质外延片,此后基于氧化镓材料的器件研究成果开始爆发式出现,各国开始争相布局。
国内方面,2017年,科技部高新司从出台的重点研发计划,把“氧化镓”列入到其中;2018年,北京市科委对前沿新材料率先开展了研究工作,并且把“氧化镓”列为重点项目。
据了解,目前我国从事氧化镓材料和器件研究单位,主要是中电科46所、西安电子科技大学、山东大学、上海光机所、上海微系统所、复旦大学、南京大学等高校及科研院所;企业方面有铭镓半导体、深圳进化半导体、北京镓族科技、杭州富加镓业等。(文:集邦化合物半导体 Cecilia整理)
更多SiC和GaN的市场资讯,请关注微信公众账号:集邦化合物半导体。